Standards-Based Report Card Rubric: 1st Grade Math

Report Card Section	Report Card Statement	Standards Assessed	Term Assessed	Assessment of Mastery		
				Mastered Grade Level Standard (3)	Approaching Grade Level Standard (2)	Insufficient Progress on Grade Level Standard (1)
Numerical Representations \& Relationships	I can represent a number using objects, pictures (base 10), expanded, and standard form to 120 . T1: 0-30, T2: 0-60, T3: 0-90, T4: 0-120	1.2C Use objects, pictures, \& expanded \& standard forms to represent numbers up to 120	1,2, 3, 4	Consistently and independently represents a number using objects, base 10 (picture) or number lines, expanded, and standard form $\begin{aligned} \mathrm{T} 1: & \geq 30 \\ \mathrm{~T} 2: & \geq 60 \\ \mathrm{~T}: & \geq 90 \\ \mathrm{~T} 4: & \geq 120 \end{aligned}$	Represents a number using objects, base 10 (pictures) or number lines, expanded, and standard form with support	Limited ability/unable to represent a number using objects, base 10 (pictures) or number lines, expanded, and standard form
	$\begin{gathered} \text { I can order whole } \\ \text { numbers on an open } \\ \text { number line. } \\ \text { T1: } 0-30, \mathrm{~T} 2: 0-60, \\ \text { T3: } 0-90, \mathrm{~T} 4: 0-120 \end{gathered}$	1.2F Order whole numbers up to 120 using place value \& open number lines	1,2, 3, 4	Consistently and independently orders whole numbers using both place value and an open number line $\begin{aligned} \mathrm{T} 1: & \geq 30 \\ \mathrm{~T} 2: & \geq 60 \\ \mathrm{~T} 3: & \geq 90 \\ \mathrm{~T} 4: & \geq 120 \end{aligned}$	Inconsistently orders whole numbers using place value and an open number line	Limited ability/unable to order whole numbers using place value and an open number line
	I can compare two numbers using $<,>$, or $=$. T1: 0-25, T2: 0-50, T3: 0-75, T4: 0-100	1.2G Represent the comparison of two numbers to 100 using the symbols $>,<$, or $=$	1,2, 3, 4	Consistently and independently represents the comparison of two numbers to 100 using the symbols $>$, $<$, or $=$ $\begin{aligned} & \mathrm{T} 1: \geq 25 \\ & \mathrm{~T} 2: \geq 50 \end{aligned}$	Verbally compares two numbers using comparative language, but inconsistently uses the symbols accurately	Confuses the concepts of more/greater than and less/less than

				$\begin{aligned} \mathrm{T} 3 & \geq 75 \\ \mathrm{~T} 4 & \geq 100 \end{aligned}$		
Computations \& Algebraic Relationships	I can solve a word problem using objects and pictorial models.	1.3B Use objects \& pictorial models to solve word problems involving joining, separating, \& comparing sets within 20 \& unknowns as any one of the terms in the problem such as $2+4=\underset{=}{ } \quad 3+]_{-3}=7 ; \& 5$	3, 4	Consistently and independently solves all 1-step word problem types involving joining, separating, and comparing sets with an unknown (start, change or result) using objects or pictures	Solves 3-5 of the 6 types of 1-step word problems involving joining, separating, and comparing sets with an unknown (start, change or result) using objects or picture or all types with support	Solves $0-2$ of the 6 types of 1-step word problems involving joining, separating, and comparing sets with an unknown (start, change or result) using objects or picture
	I can compose 10 with 2 or more addends with and without objects.	1.3C Compose 10 with two or more addends with and without concrete objects	1, 2, 3, 4	Consistently and independently composes 10 with two or more addends with and without objects	Composes 10 with two or more addends, only with objects	Composes 10 with two or more addends, only with objects with support
	I can generate and solve an addition or subtraction word problem when given a number sentence.	1.3F Generate \& solve problem situations when given a number sentence involving addition or subtraction of numbers within 20	3, 4	Consistently and independently generates (written or oral) and solves a word problem when given a number sentence involving addition or subtraction	Generates (written or oral) and solves a word problem when given a number sentence involving addition or subtraction with support	Limited ability/unable to generate (written or oral) and solve a word problem when given a number sentence involving addition and subtraction
Numerical Representations \& Relationships	I can skip count by $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10s. T1: 0-30, T2: 0-60, T3: 0-90, T4: 0-120	1.5B Skip count by twos, fives, \& tens to determine the total number of objects up to 120 in a set	1, 2, 3, 4	Consistently and independently skip counts by twos, fives, and tens to determine the total number of objects in a set $\begin{aligned} \mathrm{T} 1: & \geq 30 \\ \mathrm{~T} 2: & \geq 60 \\ \mathrm{~T} 3: & \geq 90 \\ \mathrm{~T} 4: & \geq 120 \end{aligned}$	Accurately skip counts 1-2 out of the 3 following ways: by twos, fives, and tens to determine the total number of objects in a set	Limited ability/unable to skip count by twos, fives, and tens to determine the total number of objects in a set
Computations \& Algebraic	I can understand that both sides of the equal sign	1.5E Understand that the equal sign represents a	3, 4	Consistently and independently	Understands that expressions on both	Identifies the equal sign and associates it

Relationships	represent the same value.	relationship where expressions on each side of the equal sign represent the same value(s)		demonstrates an understanding that expressions on both sides of the equal sign represent the same value (balance) (i.e., $4+5=2+7$)	sides of the equal sign represent the same value (balance) with support (i.e., $4+5=2+7$)	with an answer to a problem rather than the balance of the two sides
Geometry \& Measurement	I can classify and sort regular and irregular 2D shapes based on attributes.	1.6A Classify \& sort regular \& irregular two-dimensional shapes based on attributes using informal geometric language	2, 3, 4	Consistently and independently classifies and sorts regular and irregular two- dimensional shapes in multiple ways based on attributes using informal geometric language	Classifies and sorts regular and irregular two-dimensional shapes in one way based on attributes using informal geometric language	Limited ability/unable sort two-dimensional shapes in one way based on attributes
	I can tell time to the hour and half hour using analog and digital clocks.	1.7.E Tell time to the hour and half hour using analog and digital clocks	3, 4	Consistently and independently tells time to the hour and half hour using both analog and digital clocks	Tells time to the hour and half hour using either analog or digital clocks	Tells time to the hour using either analog or digital clocks
	I can identify examples and non-examples of halves and fourths.	1.6.H Identify examples and non-examples of halves and fourths	3, 4	Consistently and independently identifies examples and non-examples of halves and fourths	Identifies examples or non-examples of either halves or fourths or both with support	Identifies a half, but does not know they are equal
	I can measure an object using the same size units, end-to-end with no gaps or overlays.	1.7B Illustrate that the length of an object is the number of same-size units of length that, when laid end-to-end with no gaps or overlaps, reach from one end of the object to the other	3, 4	Consistently and independently measures an object using the same-size units of length, laid end-to-end with no gaps or overlaps, and that will reach from one end of the object	Measures an object using the same-size units of length, laid end-to-end with some gaps or overlaps or measures correctly with support	Measures an object inaccurately, with gaps or overlaps

				to the other		
Data Analysis \& Personal Financial Literacy	I can draw conclusions \& generate \& answer questions from picture and bar-type graphs.	1.8C Draw conclusions \& generate \& answer questions using information from picture \& bar-type graphs	2, 3, 4	Consistently and independently draws conclusions and generates and answers questions using information from picture and bar-type graphs	Draws conclusions or generates and answers questions using information from picture and bar-type graphs with support	Limited ability/unable to draw conclusions from using a picture and/or bar type graph
	I can identify coins by value and describe the relationships between them.	1.4A Identify U.S. coins including pennies, nickels, dimes, and quarters by value and describe the relationships between them	1,2, 3, 4	Consistently and independently identifies coins by value and describes the relationship between them	Identifies coins by value, but needs support to describe relationship	Limited ability/unable to identify coins or their value

Consistently = Able to complete tasks with $85-100 \%$ accuracy of the time over the assessment term (i.e., They are mostly accurate.)
Inconsistently = Able to complete tasks with $50-84 \%$ accuracy of the time over the assessment term (i.e., They are accurate more than half the time.)
With supports = Instructional tools (i.e., math tools, dictionaries, word walls) or teacher prompts (i.e., suggesting strategy, asking questions, giving sentence stems)
Limited Ability/Unable to = Able to complete tasks with less than 50% accuracy of the time over the assessment term

